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Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation for where a is a positive constant.

(i) Sketch the curve, using a continuous line for sections where and a broken line for
sections where [3]

(ii) Find the area enclosed by one of the loops. [5]

(b) Find the exact value of [5]

(c) Use a trigonometric substitution to find [5]

2 In this question, q is a real number with and 

(i) State the modulus and argument of each of the complex numbers

Illustrate these three complex numbers on an Argand diagram. [6]

(ii) Show that [4]

Infinite series C and S are defined by

(iii) Show that and find a similar expression for S. [8]C �
4 cos 2q � 2 cos q

5 � 4 cos 3q
,

S � sin 2q � 1
2 sin 5q �  14 sin 8q � 1

8 sin 11q � ...  .

C � cos 2q � 1
2 cos 5q �  14 cos 8q � 1

8 cos 11q � ...  ,

(1 � w) (1 � w*) � 5
4 � cos 3q.

w,     w*    and    jw.

w � 1
2 e3jq.0 � q � 1

6 p ,
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r � 0.
r � 0

– 12 p � q � 1
2 p,r � acos 3q
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3 The matrix 

(i) Show that the characteristic equation for M is [3]

(ii) Show that –1 is an eigenvalue of M, and find the other two eigenvalues. [3]

(iii) Find an eigenvector corresponding to the eigenvalue –1. [3]

(iv) Verify that are eigenvectors of M. [3]

(v) Write down a matrix P, and a diagonal matrix D, such that [3]

(vi) Use the Cayley-Hamilton theorem to express in the form [3]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (a) Solve the equation 

giving the answers in an exact logarithmic form. [6]

(b) Find the exact value of [4]

(c) (i) Differentiate with respect to x. [2]

(ii) Use integration by parts to show that [6]�
2

  0
arsinh ( 23 x) dx � 2 ln 3 � 1.

arsinh ( 23 x)

�
2

  0
e x sinh x dx .

sinh x � 4 cosh x � 8,

aM2 � bM � cI .M–1

M3 � PDP–1.

3
0
1

0
3
2

Ê

Ë
Á
Á

ˆ

¯
˜
˜ -

Ê

Ë
Á
Á

ˆ

¯
˜
˜

and

l 3 � 6l 2 � 9l � 14 � 0.

M = - -
-

Ê

Ë
Á
Á

ˆ

¯
˜
˜

1 2 3
2 3 6
2 2 4

.
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Option 2: Investigation of curves 

This question requires the use of a graphical calculator.

5 A curve has equation where k is a positive constant and 

(i) Find the equations of the three asymptotes. [3]

(ii) Use your graphical calculator to obtain rough sketches of the curve in the two separate cases
and [4]

(iii) In the case , your sketch may not show clearly the shape of the curve near . Use
calculus to show that the curve has a minimum point when [5]

(iv) In the case , your sketch may not show clearly how the curve approaches its asymptote
as Show algebraically that the curve crosses this asymptote. [2]

(v) Use the results of parts (iii) and (iv) to produce more accurate sketches of the curve in the two
separate cases and These sketches should indicate where the curve crosses the
axes, and should show clearly how the curve approaches its asymptotes. The presence of
stationary points should be clearly shown, but there is no need to find their coordinates.

[4]

k � 2.k � 2

x Æ ��.
k � 2

x � 0.
x � 0k � 2

k � 2.k � 2

k � 2.y �
x3 � k3

x2 � 4
,

4
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2 (i) θ3arg,2
1 == ww  

θ3*arg,* 2
1 −== ww  

πθ 2
1

2
1 3jarg,j +== ww  
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General Comments 

 
There was quite a range of performance on this paper. There were some really good scripts, with about 
10% of candidates scoring more than 60 marks out of 72. On the other hand, about 20% of candidates 
scored less than 30 marks; many were clearly not ready to take the paper and found it to be a severe 
challenge. Some candidates appeared to run out of time, but this was usually a consequence of using very 
long and complicated methods in the integration questions. 
In Section A, the work on the matrices topic (question 3) was of a much higher standard than that 
on calculus and complex numbers. 
In Section B, almost every candidate chose the question on hyperbolic functions. 
 
Comments on Individual Questions 
 
1) This question, on polar equations and integration, was found to be quite difficult, 

especially part (c), The average mark was about 10 out of 18. 
In part (a)(i), most candidates drew a curve of the correct shape with three loops, but the 
use of continuous and broken lines was usually incorrect. A common error was to use 
broken lines in the third and fourth quadrants, which corresponds to the domain 

πθ ≤≤0  instead of the given πθπ 2
1

2
1 ≤≤− . 

In part (a)(ii), the calculation of the area was generally well understood, although the 
limits of integration were quite often incorrect. Most candidates realised that the 
integration of θ3cos2  required the use of a double angle formula, but the details were 
not always correct. 
In part (b), most candidates recognised that this integral involved arcsin, and some were 
able to write down a completely correct result with little difficulty. The factor 2

1  was 

often omitted, and 
3

4x  sometimes appeared instead of 
3

2x . 

In part (c), very many candidates did not make a tan substitution, and so were unable to 
make any progress. Some used the correct substitution and obtained an integral 

involving 
θ
θ

3

2

sec
sec  but failed to simplify this to θcos  and complete the integration. Only 

a few obtained the correct answer. 
  
2) This question, on complex numbers, was the worst answered, with an average mark of 

about 9 out of 18. 
Some candidates sailed through part (i), but the majority made at least one slip, 
particularly with the arguments; quite a few gave the modulus of jw as j2

1 . Many 
appeared to be very uncertain about what was required, possibly because there was not a 
precise value of θ  to work with. 
The proof in part (ii) was handled well, and usually scored full marks. Those who 
started by writing θj3

2
1 e* −=w  had an easier time than those who went straight to 

)3sinj3(cos* 2
1 θθ −=w . 

In part (iii), most candidates knew that they should consider SC j+ , but many seemed 
to be unfamiliar with the methods required to progress beyond this, so the marks in this 
part were often low. Some who obtained the correct sum of the infinite series were 
unable to convert it into a form with a real denominator. However, there were some 



confident and efficient solutions from candidates who recognised the connection with 
part (ii) and then kept the numerator in exponential form. 

  
 
3) This question, on matrices, was by far the best answered, with an average mark of about 

14 out of 18. Most candidates displayed good algebraic and numerical skills. 
In part (i) the characteristic equation was usually obtained correctly, by a great variety 
of methods. There was even some use of elementary row operations. 
In part (ii), almost all candidates found the eigenvalues accurately. 
Part (iii) was often answered well, although some candidates solved xxIM −=+ )(  or 

0xIM =− )(  instead of 0xIM =+ )( . 
Most candidates were successful in part (iv). The simplest method was to transform the 
given vectors and recognise the images as multiples of the original vectors, but some 
used much longer methods, deriving the eigenvectors in the same way as in part (iii). 
In part (v), most candidates knew that P was the matrix of eigenvectors, but many gave 
D as the diagonal matrix of eigenvalues instead of their cubes. 
In part (vi), the Cayley-Hamilton theorem and its application were generally well 
understood. Sometimes I was omitted from the equations. 

 Section B 
4) The average mark for this question, on hyperbolic functions, was about 10 out of 18. 

In part (a), most candidates converted the equation to a quadratic in exponential form, 
with a substantial number obtaining the correct answers. 
In part (b), those who wrote xsinh  in exponential form were usually successful, 
although there were a few sign errors. Very many attempted to use integration by parts, 
which is not an appropriate method here. 
In part (c), the general form of the derivative of x3

2arsinh  was usually correct, although 
many had an incorrect numerical factor. Integration by parts was often applied correctly, 
but very few managed to produce a completely convincing derivation of the given 
answer. The first difficulty was the integration of x times their answer to part (i); many 
stopped at this point, and others obtained an incorrect numerical factor. The next 
problem was the derivation of the 3ln2  term; 3lnarsinh 3

4 =  was often stated without 
any explanation. 

  
5) There were fewer than ten attempts at this question on the investigation of graphs. There 

was some competent work in parts (i) to (iv), but no candidate scored any marks for the 
improved sketches in part (v). 

 
 
 


